Ultrastructure of the enamel layer in developing teeth of the shark Carcharhinus menisorrah.
نویسندگان
چکیده
Kemp N. E. and Hovt J. A. 1969. Sequence of ossification Kemp N. E. and Park J. H. 1970. Regeneration of lepidotrichia and actinotrichia in the tailfin of the teleost Tihpia rw~s.wmhica. Deal Biol. 22, 321-342. Kerr T. 1955. Development and structure of the teeth in the dog fish Squa1u.s acunthias (L.) and Scyfiorhinus caniculus cL.1. Proc,. zoo/. Sot. Land. 125, 95-I 14. Kvam T. 1950. The Development of’ Mesodermal Enamel on Piscine Trerh. Aktietrykkeriet Trondhjem, Trondheim. Lester K. S. 1970. On the nature of “fibrils” and tubules in developing enamel of the opossum Didelphia marsupialis. J. L’ltrastrucr. Rrs. 30, 6467. Levine P. T.. Glimcher M. J.. Seycr J. M.. Huddleston J. I. and Hein J. W. 1966. Noncollagenous nature of the proteins of shark enamel. Sciencr 154, 1192-I 193. Lison L. 1949. Recherches sur l’histogenkse de I’Cmail dentairc chcz les Sklaciens. Archs Biol.. Paris 60, 1 I I-135. Moss M. L. 1968. Bone. dentine and enamel and the evolution of vertebrates. In: Biology of the Mouth (Edited by Person, P.). pp. 37-65. American Association for the Advancement of Science. Washington D.C., IJSA. Moss M. L.. Jones S. J. and Piez K. A. 1964. Calcified ectodermal collagens of shark tooth enamel and teleost scale. Science 145, 94&942. Mummer) J. H. 1917. On the structure and development of the tubular enamel of the Sparidae and Labridae. Phil. S&alus acanthias. J. Ultra%ruct. Res. 30, 441-449. _ Trms. R. Sot. (B) 208, 251269. Glas J. E. 1962. Studies on the ultrastructure of dental enNvlen M. U.. Eanes E. D. and Omnell K. A. 1963. Crvstal amel. VI. Crystal chemistry of shark’s teeth. Odont. Ret) “growth in the rat. J. cdl Biol. 18, 109%123. 13, 315326. Brvig T. 1951. Histologic studies of placoderms and fossil Glas J. E. and Omnell K. A. 1960. Studies on the ultrastrucelasmobranchs --I: the endoskeleton. with remarks on the ture of dental enamel--I: size and shape of the apatite hard tissues of lower vertebrates in general. Ark. Zool. 2, crystallites as deduced from X-ray diffraction data. .I. 321 454. Ultrastruct. Res. 31, 334-344. Orvig T. 1967. Phylogeny of tooth tissue: evolution of some Glimcher M. J.. Travis D. F.. Frlberg U. A. and Mechanic calcified tissues in early vertebrates. In: Structural and G. L. 1964. The electron microscopic localization of the Chernictd Organization of Turth(Edited by Miles A. E. W.), neutral soluble proteins of developing bovine enamel. J. Vol. I. pp. 45-l IO. Academic Press, New York. Ultrastrucf. Res. 10, 362.-376. Owen R. 184& 1845. Odontography, or a Treatise WI the Grady J. E. 1970. Tooth development in sharks. Archs oral Compurutiw 4,latomy of thr Teeth; their Physiological Biol. 15, 613-619. Relurions, ,54odr 41’ Drcelopment und Microscopic StrucUltrastructure of shark enamel layer 639 ture in the Vertebrate Animals. Hippolyte Bailliere, London. Pautard F. G. E. 1961. Studies ofenamel and baleen. J. dent. Res. 40, 1285-1286. Abst. Peyer B. 1968. Comparative Odontology (Translated and edited by Zangerl R.), The University of Chicago Press, Chicago. Piez K. A. 1962. Chemistry of the protein matrix of enamel. In: Fundamentals ofKeratinization (Edited by Butcher E. 0. and Sognnaes R. F.), pp. 173-184. American Association for the Advancement of Science, Washington D.C., U.S.A. Poole D. F. G. 1967. Phylogeny of tooth tissues: enameloid and enamel in recent vertebrates, with a note on the history of cementum. In: Structural and Chemical Organization of Teeth (Edited by Miles A. E. W.), pp. 111-149. Academic Press, New York. Porter K. R. 1952. Repair processes in connective tissues. In: Connective Tissues (Edited by Ragan C.), pp. 126158. Trans. 2nd Conf., Josiah Macy, Jr. Foundation, New York. Renh E. J. 1970. The stages of amelogenesis as observed in molar teeth of young rats. JI. Ultrastract. Res. 30, 111-15 1. Ripa L. W., Gwinnett A. J.. Guzman C. and Legler D. 1972. Microstructural and microradiographic qualities of lemon shark enameloid. Archs oral Biol. 17, 165173. Ronnholm E. 1962a. An electron microscopic study of the amelogenesis in human teeth--I: the fine structure of the ameloblasts. J. Ultrastract. Res. 6, 229-248. Ronnholm E. 1962b. The amelogenesis of human teeth as revealed by electron microscopy---II: the development of the enamel crystallites. J. Ultrastruct. Res. 6, 249-303. RBnnholm E. 1962~. The amelogenesis of human teeth as rcvcalcd h! electron microscopy--III: the structure of the oi-ganic stroma of human enamel during amelogenesis. J. Lf Itrastruct. Res. 6, 368-389. Riise C. 1898. Ueber die verschiedenen Abanderungen der Hartgewebe bei niederen Wirbeltieren. Anat. An-. 14, 21L ?I and 33-69. Salomon C. D. 1969. Dentin of Carcharhinus milberti (shark): ;I comparative histological and histochemical study. J. r/(,,r~. RKY. 40, 49-55. Sasso W. Da S. and Santos H. De S. 1961. Electron microscopy of enamel and dentin of teeth of the Odontaspis (Selachii). J. dent. Rrs. 40, 49-55. Schmidt W. J. 1940. Polarisationsoptische Untersuchung schmelzartiger Aussenschichten hes Zahnbeins von Fischen. II. Das oorzellanartine Dentin (Durodentin) der Selachier. Z. Zellforsch. mikrosk. Anat. 30, 235-272. Souza H. De S. and Sasso W. Da S. 1961. Electron diffraction and electron microscopy studies on the crystalline component of enamel of the Odontaspis (Selachii). Experientia 17, 17-19. Thomasset J. J. 1930. Recherches sur les tissus dentaires des poissons fossiles. Archs Anat. Histol. Embryol. 11, > 153. Tomes C. S. 1897. On the development of marsupial and other tubular enamels, with notes upon the development of enamel in general. Phil. Trans. R. Sot. (B) 189, 107-I 22. Tomes C. S. 1898. Upon the structure and development of the enamel ofelasmobranch fishes. Phil. Trans. R. Sot. (B) 190,443-4&l. Trautz 0. R., Klein E. and Addelston H. K. 1952. Variations in the X-ray diffractograms of dental enamel of man and shark. J. dent. Res. 31,472-473. Travis D. F. 1968. Comparative ultrastructure and organization of inorganic crystals and organic matrices of mineralized tissues. In: Biology OJ the Mouth (Edited by Person P.), pp. 237-297. American Association for the Advancement of Science, Washington DC., U.S.A. Veis A., Spector A. R. and Carmichael I>. J. 1969. The organization and polymerization of bone and dentin collagens. Clin. Orthop. 66, 188-211. Warshawsky H. 1971. A light and electron microscopic study of the nearly mature enamel of rat incisors. Anat. Rec. 169, 559-584. Weidenreich F. 1926. Uber den Schmelz der Wirbeltiere und seine Beziehungen zum Zahnbein (Knochenstudien V. Teil). Z. Anat. EntwCesch. 79, 292-351. Weinstock A. and Leblond C. P. 1971. Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by autoradiography after galactose-3H injection, J. cell Biol. 51, 26-51. Resume-Les deux premieres rang&es de dents, a I’extremite posterieure de la lame dentaire de Carcharhinus menisorrah, long de 60 cm, ne sont pas calcifiees, mais la calcification a commence au niveau de la couche ptripherique au sommet des dents de la troisieme rangee. Les cristaux d&mail se developpent a l’interieur de fibrilles creuses (tubules) d’enameline, qui polymerisent sous la membrane basale situee prb des ameloblastes. Des dsicules contenant de fines granules sont presentes dans le cytoplasme apical des ameloblastes des bourgeons dentaires avant calcification. Un materiel granulaire fin extracellulaire s’accumule entre amtloblastes et membrane basale et aussi dans la matrice d’enameline du cBte pulpaire de la membrane basale. La morphologie suggtre que les ameloblastes secretent un prtcurseur granulaire des fibrilles d’enameline. Les cristaux d’email avec leur revktement fibreux sont etroitement group&s dans les zones en voie de mineralisation. Les crjstaux deviennent trbs longs et Cquillateralement hexagonaux en coupe transversale. 11s sont disposes parallelement dans des faisceaux de fibrilles dans les zones en voie de mineraiisation. Les cristaux deviennent trb longs et tquilateralement htxagonaux en coupe per&rent dans la couche periphbrique entre des zones mineraliies. Des fibres geantes avec une periodicite transversale de 14,5 nm sont visibles dans la matrice en voie de developpement entre les zones de mintralisation. Leur origine et nature n’ont pu ttre determinCes. Des fibrilles collag&es typiques se developpent dans le tissu conjonctif de la base de la dent et dans la dentine. Les cristaux de la dentine sont en forme d’aiguilles comme chez les mammiferes. La couche ptriphbrique des dents de requins est supposee &tre constituee d’email tubulaire, oti les zones mineral&es sont analogues a l’irmail mammalien, mais qui est permeabilisi: par des prolongements odontoblastiques d’origine mes odermique. N. E. Kemp and J. H. Park Zusammenfassung-Bei einem 60 cm langen Curcharhinus menisorrah waren die ersten beiden Zahnreihen am posterioren Ende der Zahnleiste unverkalkt, jedoch hatte die Verkalkung an den Spitzen der Schmelzkappen der dritten Zahnreihe begonnen. Schmelzkristallite entwickelten sich innerhalb hohler Schmelzfibrillen (Tubuli), welche sich unter der Basalmembran der darunterliegenden Ameloblasten zusammenlagerten. Blaschen mit feingranularem Inhalt waren im apikalen Zytoplasma der Ameloblasten von Zahnkeimen vor der Kalzifikation vorhanden. Das feingranullre Material sammelte sich extrazellular zwischen den Ameloblasten und der Basalmembran. aber such in der Enamelin-Matrix auf der pulpalen Seite der Basalmembran an. Der morphologische Befund deutet darauf hin, da8 die Ameloblasten Bausteine fiir die mineralisierenden EnamelinFibrillen ausscheiden. Die Schmelzkristallite waren mit ihren fibrosen Bedeckungen in den Mineralisationszonen eng zusammengelagert. Die Kristallite werden unbestimmt lang und im Querschnitt gleichformig hexagonal. Sie waren innerhalb der in den Mineralisationszonen verwobenen Fibrillenbtindel parallel angeordnet. Odontoblastenfortitze und markhaltige Nervenfasern reichten bis in die Deckschicht zwischen den mineralisierenden Zonen. Riesenfasern mit einer Bandperiodizitlt von 14.5 nm traten in der beteiligten Matrix zwischen den Mineralisationszonen auf. Deren Herkunft und Natur war unklar. Normale Kollagenfasern entwickehen sich im Bindegewebe innerhalb der Basis des Zahnes sowie im Dentin, sobald dies zu differenzieren beginnt. Kristallite des mineralisierten Dentins waren wie bei Saugetiercn nadelformig. Die Kappenschicht des Haifischzahnes diirfte aus tubularem Schmelz bestehen, in welchem die mineralisierten Zonen wahrscheinlich dem Saugetierschmelz entsprechen, obwohl cr von Odontoblastenfortsatzen mesodermaler Herkunft durchdrungen wird.
منابع مشابه
Acanthocheilus rotundatus (Nematoda: Acanthocheilidae) from the intestine of shark (Carcharhinus macloti) in Persian Gulf, Iran
In a parasitic study on five Sharks (Carcharhinus macloti) caught from the Iranian coasts of Persian Gulf, two of five sharks appeared to have nematode in their intestine. Using light microscopy, the nematode was identified as Acanthocheilus rotundatus. A. rotundatus is characterised by 3.3-4.5 cm in length, semithick cuticle, small lips, semicircular and tri-lobed pseudolabia (not offset from...
متن کاملFive decades of decline in sharks of Iran
Shark stocks in Iranian water of the Persian Gulf and Gulf of Oman are declining sharply. Although fishing and heavy fines have been banned by the organizations in charge of fishing for these fish, bycatch in some fishing methods, including Neritic and oceanic Gillnet, trawl fish and shrimp, long loine and trolling, still catch sharks. Slowly In this study, during a period of 10 years from 2010...
متن کاملFeeding Behavior in Three Species of Sharks
THIS REPORT concerns a study of the feeding behavior in three species of sharks: Carcharhinus menisorrah Miiller and Henle, the grey shark (Fig. 1), Carcharhinus melanopterus Quoyand Gaimard, the blacktip shark (Fig. 2), both of the family Carcharhinidae; and Triaenodon obesus Riippell, the whitetip shark (Fig. 3), of the family Triakidae. The study was conducted in the lagoon at Eniwetok Atoll...
متن کاملModelling tooth–prey interactions in sharks: the importance of dynamic testing
The shape of shark teeth varies among species, but traditional testing protocols have revealed no predictive relationship between shark tooth morphology and performance. We developed a dynamic testing device to quantify cutting performance of teeth. We mimicked head-shaking behaviour in feeding large sharks by attaching teeth to the blade of a reciprocating power saw fixed in a custom-built fra...
متن کاملAmeloblastic secretion and calcification of the enamel layer in shark teeth.
Tooth primordia at early stages of mineralization in the sharks Negaprion brevirostris and Triaenodon obesus were examined electron microscopically for evidence of ameloblastic secretion and its relation to calcification of the enamel (enameloid) layer. Ameloblasts are polarized with most of the mitochondria and all of the Golgi dictyosomes localized in the infranuclear end of the cell toward t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archives of oral biology
دوره 19 8 شماره
صفحات -
تاریخ انتشار 1974